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Abstract. We have reconsidered theoretical upper bounds on the scalar boson masses within the two-
Higgs-doublet model (THDM), employing the well-known technical condition of tree-level unitarity. Our
treatment provides a modest extension and generalization of some previous results of other authors. We
present a rather detailed discussion of the solution of the relevant inequalities and offer some new analytic
formulae as well as numerical values for the Higgs mass bounds in question. A comparison is made with the
earlier results on the subject that can be found in the literature.

1 Introduction

The two-Higgs-doublet model (THDM) of electroweak in-
teractions is one of the simplest extensions of the Standard
Model (SM). It incorporates two complex scalar doublets
in the Higgs sector, but otherwise its structure is the same
as that of the SM. Obviously, such a theory is rather ap-
pealing on purely aesthetic grounds: in view of the famil-
iar doublet pattern of the elementary fermion spectrum,
one can speculate that an analogous organizational princi-
ple might work for the ‘scalar Higgs matter’ as well. Fur-
ther, any Higgs sector built upon doublets only is known
to preserve naturally the famous lowest-order electroweak
relation ρ = 1 (where ρ =m2W /(m

2
Z cos

2 θW )), which has
been tested with good accuracy. On the phenomenolog-
ical side, an important aspect of the THDM is that its
Higgs sector may provide an additional source of CP vi-
olation; in fact, this was the primary motivation for in-
troducing such a model in the early literature on spon-
taneously broken gauge theories in particle physics [1].
Of course, there is at least one more reason why the
THDM has become popular1 during the last two decades
or so: its Higgs sector essentially coincides with that of
the minimal supersymmetric SM (MSSM), but the values
of the relevant parameters are less restricted. The spec-
trum of physical Higgs particles within the THDM consists
of five scalar bosons, three of them being electrically neu-
tral (denoted usually as h, H and A0) and the other two
charged (H±). At present, some partial information con-
cerning direct experimental lower bounds for the Higgs
masses is available, coming mostly from the LEP data
(cf. [4]).

a e-mail: horejsi@ipnp.troja.mff.cuni.cz
b e-mail: kladiva@ipnp.troja.mff.cuni.cz
1 For useful reviews of the subject see e.g. [2, 3].

On the other hand, it is also interesting to know what
could be possible theoretical limitations for masses of the
so far elusive Higgs particles within such a ‘quasi-realistic’
model. For this purpose, some rather general methods have
been invented, basedmostly on the requirements of internal
consistency of the quantum field theoretical description of
the relevant physical quantities. One particular approach,
which is perhaps most straightforward in this regard, relies
on perturbative unitarity of the S-matrix. In its simplest
form it is implemented at the lowest order, by imposing
unitarity constraints on the tree-level amplitudes of a suit-
able set of scattering processes. Let us recall that this tech-
nique was originally developed by B.W. Lee, C. Quigg and
H.B. Thacker (LQT), who employed it in their well-known
analysis of perturbative upper bounds for the SMHiggs bo-
son mass [5]. The LQT method was subsequently applied
also to electroweak models with extended Higgs sectors;
some results can be found in [6–8]. In particular, in [7, 8]
there was analysed in this way a restricted version of the
THDMwith a CP -conserving Higgs sector and slightly dif-
fering values of the bounds in question were obtained (due
to slightly different implementations of the LQT method).
Recently, the issue of tree-unitarity constraints for THDM
Higgs boson masses has been taken up again in [9] (see
also [10, 11]), where a rather general model involving CP
violation has been considered; this seems to be another vin-
dication of the persisting interest in the subject.
The purpose of the present paper is to supplement and

extend the existing results concerning the THDM Higgs
mass upper bounds.We carry out a rather detailed analysis
of a relevant set of inequalities that follow from the require-
ment of tree-level unitarity. In particular, the procedure of
explicit solution of these constraints is discussed in con-
siderable detail and, among other things, some results of
the corresponding numerical calculations within a general
THDM are presented. For the model without CP violation
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we were able to find a set of analytic expressions as well.
Note that in this latter case, most of the calculational de-
tails are also contained in an earlier unpublished work by
one of us (see [12]). Let us also remark that there is no sub-
stantial overlap of the material presented in [9–11] with
our results, so we believe that it makes sense to offer our de-
tailed analysis as a contribution to the current literature on
the particular problem in question.
The plan of our paper is as follows: in Sect. 2 the

THDM scalar potential and the scalar fields are described
in some detail, in Sect. 3 we summarize briefly the LQT
method and its implementation within the THDM and
in Sect. 4 the relevant inequalities expressing the tree-
unitarity constraints are examined. The main analytic re-
sults for the mass bounds in question are contained in
Sects. 5, 6 and 7, and 8 contains numerical results obtained
in the CP -violating case (where we have not been able to
find analytical results). The main results are summarized
in Sect. 9.

2 THDM scalar potential

The most general scalar potential within the THDM that
is invariant under SU(2)×U(1) can be written as (cf. [13]
or [3])

V (Φ) = λ1
(
Φ†1Φ1−

v21
2

)2
+λ2

(
Φ†2Φ2−

v22
2

)2

+λ3
(
Φ†1Φ1−

v21
2 +Φ

†
2Φ2−

v22
2

)2

+λ4
[
(Φ†1Φ1)(Φ

†
2Φ2)− (Φ

†
1Φ2)(Φ

†
2Φ1)
]

+λ5
[
Re(Φ†1Φ2)−

v1v2
2 cos ξ

]2

+λ6
[
Im(Φ†1Φ2)−

v1v2
2 sin ξ

]2
. (1)

Note that such a form involves CP violation, which is
due to ξ �= 0 [3]. It also possesses an approximate discrete
Z2 symmetry under Φ2→−Φ2; this is broken ‘softly’, by
means of the quadratic term

v1v2

(
λ5 cos ξ Re(Φ

†
1Φ2)+λ6 sin ξ Im(Φ

†
1Φ2)
)

= v1v2 Re
[
(λ5 cos ξ− iλ6 sin ξ)Φ

†
1Φ2

]
. (2)

Let us recall that the main purpose of such an extra par-
tial symmetry within the THDM is to suppress naturally
the flavour-changing processes mediated by neutral scalar
exchanges that could otherwise arise within the quark
Yukawa sector [14]. Note also that if such a symmetry were
exact, there would be noCP violation in the Higgs sector of
the considered model. For further remarks concerning the
role of the Z2 symmetry, see e.g. [9] and references therein.
As a quantitative measure of the Z2 violation we introduce
a parameter ν, defined as

ν =

√
λ25 cos

2 ξ+λ26 sin
2 ξ (3)

(note that our definition of ν differs slightly from that used
in [9].) The minimum of the potential (1) occurs at

Φ1 =
1
√
2

(
0
v1

)
, Φ2 =

1
√
2

(
0
v2

)
eiξ, (4)

where we have adopted, for convenience, the usual simple
choice of phases. Such a minimum determines vector boson
masses through the Higgs mechanism; in particular, for the
charged W boson one obtains m2W =

1
2g
2(v21 + v

2
2), with g

standing for the SU(2) coupling constant. In a standard
notation one then writes v1 = v cosβ, v2 = v sinβ, where
v is the familiar electroweak scale, v = (GF

√
2)−1/2

.
=

246GeV and β is a free parameter. The THDM involves
eight independent scalar fields: three of them can be iden-
tified with the would-be Goldstone bosons w±, z (the la-
belling is chosen so as to indicate that they are direct
counterparts of the massive vector bosons W±, Z within
an R-gauge) and the remaining five correspond to physi-
cal Higgs particles – the charged H± and the neutral ones

h,H,A0 .
We will now describe the above-mentioned Goldstone

and Higgs bosons in more detail. To this end, let us start
with a simple representation of the doublets, namely

Φ1 =

(
w−1

1√
2
(v1+h1+ iz1)

)

Φ2 =

(
w−2

1√
2
(eiξv2+h2+ iz2)

)
.

(5)

Of course, the scalar fields introduced in (5) are in general
unphysical; the w±1,2 are taken to be complex and the re-
maining ones real, but otherwise arbitrary. Note that an
advantage of such a parametrization is that the form of
the quartic interactions is then the same as in the CP -
conserving case. The proper Goldstone and Higgs fields
are found through a diagonalization of the quadratic part
of the potential (1). When doing it, a convenient starting
point is a slightly modified doublet parametrization

Φ1 =

(
w−1

1√
2
(v1+h1+ iz1)

)

Φ2 =

(
w′−2

1√
2
(v2+h

′
2+ iz

′
2)

)
eiξ.

(6)

That is obtained from (5) by means of the unitary trans-
formation h′2 = h2 cos ξ+ z2 sin ξ, z

′
2 = z2 cos ξ−h2 sin ξ

and w′±2 = e
−iξw±2 . Next, the scalar fields in (6) are ro-

tated pairwise as
(
H ′

h′

)
=

(
cosβ sinβ
− sinβcosβ

)(
h1
h′2

)
, (7)

(
A′

z

)
=

(
cosβ sinβ
− sinβcosβ

)(
z1
z′2

)
, (8)

(
ζ
w

)
=

(
cosβ sinβ
− sinβcosβ

)(
w1
w′2

)
. (9)

When the quadratic part of (1) is recast in terms of the new
variables, one finds that the z, w± are massless Goldstone
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bosons and the H± represent massive charged scalars. At
this stage, the fields h′,H ′, A′ are still mixed and their
mass matrix reads⎛
⎜⎜⎜⎜⎝

{
1
2 [s
2
2β(λ1+λ2)

+c22βν
2]

} {
s2β [s2βλ2−c

2
βλ1

+ 12 c2βν
2]

}
c2βs2ξ
4 (λ6−λ5){

s2β [s2βλ2−c
2
βλ1

+ 12 c2βν
2]

} {
2[c4βλ1+s

4
βλ2

+λ3+
1
4 s
2
2βν

2]

}
s2βs2ξ
4 (λ6−λ5)

c2βs2ξ
4 (λ6−λ5)

s2βs2ξ
4 (λ5−λ6)

1
2 [s
2
ξλ5+c

2
ξλ6]

⎞
⎟⎟⎟⎟⎠
.

(10)

By diagonalizing it, one obtains the true Higgs bosons h,
H, A0. The operation of charge conjugation C means the
complex conjugation of these physical fields (i.e. not of
those appearing in the parametrization (5)). However, we
can employ the representation (6) involving fields that are
linear combinations of real variables without complex coef-
ficients. Note that for ξ = 0 (the CP -conserving case) A is
a CP -odd Higgs boson (A′ = A in such a case) and H, h
are CP even. Such a statement is also true when ξ = π/2
and/or λ5 = λ6; as we shall see later in this section, for
these particular values of parameters there is again no CP
violation in the potential (1).
For ξ = 0 the Higgs boson masses can be calculated

explicitly, and subsequently one can express the coupling
constants λi in terms of masses and a mixing angle defined
through

(
h1
h2

)
=

(
cosα− sinα
sinα cosα

)(
h
H

)
. (11)

Let us now express λ1,2,3,4 in terms of the Higgs boson
masses in the case ξ = 0 (as we have only four distinct
masses, we leave λ5 as a free parameter). One obtains

λ4 = 2v
−2m2± λ6 = 2v

−2m2A

λ3 = 2v
−2 sαcβ

sβcβ
(m2H −m

2
h)−

λ5

4

λ1 =
1

2
v−2
[
c2αm

2
H + s

2
αm

2
h−
sαcβ

tanβ
(m2H−m

2
h)

]

−
λ5

4

(
1

tan2 β
−1

)

λ2 =
1

2
v−2
[
s2αm

2
H + c

2
αm

2
h− sαcβtanβ(m

2
H −m

2
h)
]

−
λ5

4

(
1

tan2 β
−1

)
. (12)

Note also that the matrix of the quadratic form of the
scalar fields is the Hessian of the potential at its minimum.
The condition for the existence of a minimum is that the
Hessian is positive definite, and this in turn means that the
Higgs boson masses (squared) are positive.
Finally, let us discuss briefly the particular cases ξ = 0,

ξ = π/2 and λ5 = λ6. The case ξ = 0 represents a model
without CP violation within the scalar sector, as is de-
scribed in [3]. The case ξ = π/2 can be analysed easily in
the parametrization (6); using this, the potential can be
viewed as in the case ξ = 0 with the change of notation

Φ′1 = Φ1 Φ′2 = iΦ2 λ5↔ λ6. (13)

Thus, the two cases are equivalent. When λ6 = λ5, the
ξ-dependent part of the potential can be recast as

λ5

(
Re(Φ†1Φ2)−

v1v2

2
cos ξ
)2

+λ6
(
Im(Φ†1Φ2)−

v1v2

2
sin ξ
)2

= λ6

∣∣∣Φ†1Φ2−
v1v2

2
eiξ
∣∣∣
2

. (14)

The remaining terms do not depend on the relative phase
between Φ1 and Φ2, so that the phase factor e

iξ can be
transformed away and one thus again has a CP -conserving
case. A particular consequence of such an analysis is that
for ν = 0 there can be no CP violation.

3 LQT method

For finding the upper bounds on the Higgs boson masses
we will employ the well-known LQTmethod invented three
decades ago [5]. This method relies on imposing the con-
dition of perturbative (in particular, tree-level) unitar-
ity on an appropriate set of physical scattering processes.
Within a renormalizable theory, the scattering amplitudes
are ‘asymptotically flat’, i.e. they do not exhibit any power-
like growth in the high-energy limit. However, the domin-
ant couplings are typically proportional to the scalar boson
masses and one can thus obtain useful technical constraints
on their values. In the pioneering paper [5] the method was
applied to the minimal SM, and several groups of authors
employed it subsequently within models involving an ex-
tended Higgs sector, in particular the THDM (cf. [6–8]).
The results of various authors differ slightly, so it perhaps
makes sense to reconsider the corresponding calculation
and present, for the sake of clarity, some additional techni-
cal details of the whole procedure.
In the spirit of the LQT approach, our analysis is based

on the condition of tree-level S-matrix unitarity within the
subspace of two-particle states. Instead of the unitarity
condition used in the original paper [5], we can adopt an
improved constraint for the s-wave partial amplitudeM0,
namely

|ReM0| ≤
1

2
(20)

(cf. [15]). Note that the tree-level matrix elements in ques-
tion are real, and in the high-energy limit their leading con-
tributions do not involve any angular dependence. Thus,
M0 generally coincides with the full tree-level (asymp-
totic) matrix elementM, up to a conventional normaliza-
tion factor of 16π appearing in the standard partial-wave
expansion. The effective unitarity constraint (20) then be-
comes

|M| ≤ 8π. (21)

For an optimal implementation of the unitarity constraints
we will consider the eigenvalues of the matrixMij =Mi→j ,
where the indices i and j label symbolically all possible
two-particle states. Having in mind our primary goal, we
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Table 1. All matrix elements for two-particle Higgs and Goldstone boson scattering

Neutral channels (I)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

w+1 w
−
2 w+2 w

−
1 h1z2 h2z1 z1z2 h1h2

w+1 w
−
2 2λ3+

λ5
2 +

λ6
2 4

(
λ5
4 −

λ6
4

)
i
2λ4−

i
2λ6

−i
2 λ4+

i
2λ6

−λ4
2 +

λ5
2

−λ4
2 +

λ5
2

w+2 w
−
1 4

(
λ5
4 −

λ6
4

)
2λ3+

λ5
2 +

λ6
2

−i
2 λ4+

i
2λ6

i
2λ4−

i
2λ6

−λ4
2 +

λ5
2

−λ4
2 +

λ5
2

h1z2
−i
2 λ4+

i
2λ6

i
2λ4−

i
2λ6 4

(
λ3
2 +

λ6
4

)
λ5
2 −

λ6
2 0 0

h2z1
i
2λ4−

i
2λ6

−i
2 λ4+

i
2λ6

λ5
2 −

λ6
2 4

(
λ3
2 +

λ6
4

)
0 0

z1z2
−λ4
2 +

λ5
2

−λ4
2 +

λ5
2 0 0 4

(
λ3
2 +

λ5
4

)
λ5
2 −

λ6
2

h1h2
−λ4
2 +

λ5
2

−λ4
2 +

λ5
2 0 0

λ5
2 −

λ6
2 4

(
λ3
2 +

λ5
4

)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(15)

Neutral channels (II)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

w+1 w
−
1 w+2 w

−
2

z1z1√
2

z2z2√
2

h1h1√
2

h2h2√
2

w+1 w
−
1 4(λ1+λ3) 2λ3+

λ5
2 +

λ6
2

√
2(λ1+λ3)

√
2(λ1+λ3)

√
2
(
λ3+

λ4
2

) √
2
(
λ3+

λ4
2

)
w+2 w

−
2 2λ3+

λ5
2 +

λ6
2 4(λ2+λ3)

√
2
(
λ3+

λ4
2

) √
2
(
λ3+

λ4
2

) √
2(λ2+λ3)

√
2(λ2+λ3)

z1z1√
2

√
2(λ1+λ3)

√
2
(
λ3+

λ4
2

)
3(λ1+λ3) λ1+λ3 λ3+

λ5
2 2

(
λ3
2 +

λ6
4

)
z2z2√
2

√
2(λ1+λ3)

√
2
(
λ3+

λ4
2

)
2
(
λ1
2 +

λ3
2

)
3(λ1+λ3) 2

(
λ3
2 +

λ6
4

)
2
(
λ3
2 +

λ5
4

)
h1h1√
2

√
2
(
λ3+

λ4
2

) √
2(λ2+λ3) 2

(
λ3
2 +

λ5
4

)
2
(
λ3
2 +

λ6
4

)
3(λ2+λ3) 2

(
λ2
2 +

λ3
2

)
h2h2√
2

√
2
(
λ3+

λ4
2

) √
2(λ2+λ3) 2

(
λ3
2 +

λ6
4

)
2
(
λ3
2 +

λ5
4

)
2
(
λ2
2 +

λ3
2

)
3(λ2+λ3)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(16)

Neutral channels (III)

( h1z1 h2z2

h1z1 2(λ2+λ3)
1
2 (λ5−λ6)

h2z2
1
2 (λ5−λ6) 2(λ1+λ3)

)
(17)

Charged channels (I)

⎛
⎜⎜⎜⎜⎝

h1w
+
1 h2w

+
1 z1w

+
1 z2w

+
1

h1w
+
1 2(λ1+λ3)

−λ4
2 +

λ5
2 0 i

2λ4−
i
2λ6

h2w
+
1

−λ4
2 +

λ5
2 2(λ2+λ3)

i
2λ4−

i
2λ6 0

z1w
+
1 0 −i

2 λ4+
i
2λ6 2(λ1+λ3)

−λ4
2 +

λ5
2

z2w
+
1

−i
2 λ4+

i
2λ6 0

−λ4
2 +

λ5
2 2(λ2+λ3)

⎞
⎟⎟⎟⎟⎠

(18)

Charged channels (II)

⎛
⎜⎜⎜⎜⎜⎝

h1w
+
2 h2w

+
2 z1w

+
2 z2w

+
2

h1w
+
2 2

(
λ3+

λ4
2

)
−λ4
2 +

λ5
2 0 i

2λ4−
i
2λ6

h2w
+
2

−λ4
2 +

λ5
2 2

(
λ3+

λ4
2

)
i
2λ4−

i
2λ6 0

z1w
+
2 0 −i

2 λ4+
i
2λ6 2

(
λ3+

λ4
2

)
−λ4
2 +

λ5
2

z2w
+
2

−i
2 λ4+

i
2λ6 0

−λ4
2 +

λ5
2 2

(
λ3+

λ4
2

)

⎞
⎟⎟⎟⎟⎟⎠

(19)

take into account only binary processes whosematrix elem-
ents involve the Higgs boson masses in the leading order,
in particular in the O(E0) terms. Invoking arguments
analogous to those used in the original paper [5], one
can show that the relevant contributions descend from
the interactions of Higgs scalars and longitudinal vector
bosons. Using the equivalence theorem for longitudinal

vector bosons and Goldstone bosons (see e.g. [5, 16]) one
finds, in accordance with the LQT treatment, that the
only relevant contributions come from the amplitudes in-
volving Higgs bosons and unphysical Goldstone bosons
(that occur in an R-gauge formulation of the theory). It
means that we will examine the above-mentioned matrix
Mij , including all two-particle states made of the scalars
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(both physical and unphysical) w±, z,H±, A0,H, h. It is
not difficult to see that the leading terms in the indi-
vidual amplitudes are determined by the direct (contact)
quartic scalar interactions, while the triple vertices enter
second-order Feynman graphs and their contributions are
suppressed by the propagator effects in the high-energy
expansion.
As noted above, we will be mainly concerned with the

eigenvalues of the two-particle scattering matrix. It means
that for our purpose we can consider, equivalently, any uni-
tary transformation of the matrix Mij . In particular, it is
more convenient to take, instead of Mij , a matrix consist-
ing of the scattering amplitudes between the two-particle
states made of the ‘particles’ w±a , za, ha corresponding to
the parametrization (5). The set of all these matrix elem-
ents is summarized in Table 1. The relevant eigenvalues can
be found in [8].
Matrix elements for the scattering processes corres-

ponding to the two-particle states (w+1 w
−
2 , w

+
2 w

−
1 , h1z2,

h2z1, z1z2, h1h2) form the submatrix (15) with eigenvalues

e1 = 2λ3−λ4−
1

2
λ5+

5

2
λ6

e2 = 2λ3+λ4−
1

2
λ5+

1

2
λ6

f+ = 2λ3−λ4+
5

2
λ5−

1

2
λ6

f− = 2λ3+λ4+
1

2
λ5−

1

2
λ6

f1 = f2 = 2λ3+
1

2
λ5+

1

2
λ6.

(22)

Another submatrix is defined by means of the states
(w+1 w

−
1 , w

+
2 w

−
2 ,
z1z1√
2
, z2z2√

2
, h1h1√

2
, h2h2√

2
); it has the form (16)

and its eigenvalues are

a± = 3(λ1+λ2+2λ3)

±
√
9(λ1−λ2)2+[4λ3+λ4+

1
2 (λ5+λ5)]

2

b± = λ1+λ2+2λ3

±
√
(λ1−λ2)2+

1
4 (−2λ4+λ5+λ6)

2

c± = λ1+λ2+2λ3±
√
(λ1−λ2)2+

1
4 (λ5−λ6)

2.

(23)

A third submatrix (17) has eigenvalues c± (see (23)). Fi-
nally, there are submatrices (19) and (18) corresponding
to charged states (h1w

+
1 , h2w

+
1 , z1w

+
1 , z2w

+
1 , h1w

+
2 , h2w

+
2 ,

z1w
+
2 , z2w

+
2 ). Their eigenvalues are the f−, e2, f1, c±, b±

shown above and, in addition,

p1 = 2(λ3+λ4)−
1

2
λ5−

1

2
λ6. (24)

Unitarity conditions (21) for the eigenvalues listed above
give the constraints

|a±|, |b±|, |c±|, |f±|, |e1,2|, |f1|, |p1| ≤ 8π. (25)

Note that an independent derivation of these inequalities
based on symmetries of the Higgs potential can be found
in [9, 10].

4 Independent inequalities

However, the inequalities (25) are not all independent. In-
deed, it is not difficult to observe some simple relations
such as

3f1 = p1+ e1+f+

3e2 = 2p1+ e1

3f− = 2p1+f+

(26)

and this means that the inequalities |p1|, |f+|, |e1| ≤ 8π im-
ply |f1|, |e2|, |f−| ≤ 8π. Further, the eigenvalues (23) in the
remaining inequalities can be rewritten as

a± = 3λ123±
√
(3λ12)2+

1
4 (f++ e1+2p1)

2

b± = λ123±
√
(λ12)2+

1
36 (f++ e1−2p1)

2

c± = λ123±
√
(λ12)2+

1
36 (f+− e1)

2

(27)

where λ123 = λ1+λ2+2λ3 and λ12 = λ1−λ2. In the case
λ123 > 0 the inequalities for the a−, b−, c− follow from
a+, b+, c+ ≤ 8π. For λ123 < 0 the situation is similar, with
interchanges (a, b, c)±→ (a, b, c)∓ and λ123→−λ123.
In [7] it was noticed that among the latter inequalities,

the strongest one is a+ < 8π; Indeed, using (25) and (27)
one can show that for λ123 > 0 the remaining ones follow
from it. In the case λ123 < 0 the same statement is true con-
cerning a+ < 8π.
Thus, it is sufficient to solve the inequalities

|a±|, |f+|, |e1|, |p1| ≤ 8π. (28)

In fact, the inequality a− < 8π need not be taken into ac-
count in the subsequent discussion; it turns out that this
is weaker than the remaining ones and does not influence
the bounds in question (one can verify a posteriori that our
solutions satisfy the constraints a− < 8π automatically).

5 Upper bounds forMA andM� with ξ = 0

Before starting our calculation, let us recall that the condi-
tion ξ = 0 means that the Z2 symmetry-breaking parame-
ter ν becomes ν = λ5 (see (3)). To proceed, we shall first fix
a convenient notation. The LQT bound for the SM Higgs
mass sets a natural scale for our estimates, so let us intro-
duce it explicitly:

mLQT =

√
4π
√
2

3GF
=

√
8π

3
v
.
= 712GeV (29)

(note that in writing (29) we do not stick strictly to the
original value [5], using rather the improved bound [15]).
In the subsequent discussion we shall then work with the
dimensionless ratios

M =
m

mLQT
(30)

instead of the true scalar boson masses (denoted here
generically as m). Further, an overall constant factor 16π3
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can be absorbed in a convenient redefinition of the coupling
constants, by writing

λ′i =
3λi
16π
. (31)

Finally, we introduce new variables

X =M2H+M
2
h, Y =M

2
H−M

2
h, Z =

sin 2α

sin 2β
Y (32)

that will help to streamline a little the solution of the in-
equalities in question.
Using (12) and the definitions shown above, the λ′ can

be expressed as

λ′4 =M
2
±

λ′6 =M
2
A

λ′3 =
1

4

sin 2α

sin 2β
Y −
1

4
λ′5 =

Z

4
−
λ′5
4

λ′12 =
1

2 sin2 2β
[(X−2λ′5) cos 2β−Y cos 2α]

λ′123 =
1

2 sin2 2β
(X−Y cos 2α cos 2β−2λ′5)+

λ′5
2
.

(33)

Let us now discuss the possible bounds forM±,MA. These
can be obtained from the inequalities for |e1|, |f+|, |p1|,
which read, in our new notation

∣∣∣∣
Z

2
−λ′5−M

2
±+
5

2
M2A

∣∣∣∣≤
3

2∣∣∣∣
Z

2
+2λ′5−M

2
±−
1

2
M2A

∣∣∣∣≤
3

2∣∣∣∣
Z

2
−λ′5+2M

2
±−
1

2
M2A

∣∣∣∣≤
3

2
.

(34)

The relations (34) are linear with respect to M2±,M
2
A and

one can thus view the domain defined by these inequalities
as a hexagon in the plane (M2±,M

2
A). Then it is clear that

the highest possible value of a mass variable in question
will correspond to a vertex (or a whole hexagon side). By
examining all possible cases one finds easily that for M2±,
such a ‘critical’ vertex satisfies the condition −f+ = p1 =
8π; in view of (34) this means that it corresponds to the
values

(M2±,M
2
A) = (1+λ

′
5, 1+Z+2λ

′
5). (35)

Such a maximum value of the M2± is indeed formally ad-
missible (in the sense that by reaching it one does not
leave the parametric space of the considered model). To
see this, one can substitute in (35)M2A = λ

′
5,M

2
H = 1+λ

′
5,

M2h = 0, α= π−β. Thus, the bound becomes

M2± ≤ 1+λ
′
5. (36)

Similarly, for M2A the extremal solution corresponds to
a hexagon vertex defined by e1 =−f+ = 8π and its coordi-
nates in the (M2±,M

2
A) plane are then

(M2±,M
2
A) = (1+

Z

2
+
3

2
λ′5, 1+λ

′
5). (37)

The parameter values that saturate this maximum are
analogous and one has to take M2± = λ

′
5/2,M

2
H = 1+

λ′5,M
2
h = 0, α= π−β. In this way, the bound for M

2
A be-

comes the same as that forM2±, namely

M2A ≤ 1+λ
′
5. (38)

6 Upper bounds forMh,MH with ξ = 0

Let us now proceed to discuss the upper bounds for MH
and Mh. If we considered the relevant constraints with-
out any further specification of the scalar bosons h and
H, we would obtain the same result for both particles,
since their interchange corresponds just to the replace-
ment α→−α (cf. (11)). Thus, let us add the condition
Mh ≤MH (i.e. Y > 0). In such a case, we will solve just the
inequality a+ < 8π (which puts the most stringent bounds
on the variablesX,Y ) and in the obtained solution we will
constrainMA,M± so as to satisfy the rest of the inequali-
ties.
The basic constraint a+ < 8π is quadratic with respect

toX,Y and reads (cf. the expression (23))

(X−Y cos 2α cos 2β)−λ′5(2− sin
2 2β)+(

[
(X−2λ′5) cos 2β−Y cos 2α

]2
+

(
2

3

)2
sin4 2β

(
Y
sin 2α

sin 2β
−
λ′5
2
+M2±+

M2A
2

)2) 12
≤ sin2 2β.

(39)

To work it out, we will employ the following trick: as a first
step, we will consider a simpler inequality, which is ob-
tained from (34) by discarding the second term under the
square root; in other words, we will first assume that

Y
sin 2α

sin 2β
−
λ′5
2
+M2±+

M2A
2
= 0. (40)

Of course, the ‘reduced’ constraint

X−Y cos 2α cos 2β−λ′5(2− sin
2 2β)

+ |X cos 2β−Y cos 2α−2λ′5 cos 2β| ≤ sin
2 2β (41)

is in general weaker than the original one. Nevertheless,
in a next step we will be able to show that the obtained
mass bound does become saturated for appropriate values
of the other parameters (such that the condition (40) is
met) – i.e. that in this way we indeed obtain the desired
minimum upper mass bound corresponding to the original
constraint (39). Thus, let us examine the inequality (41).
Obviously, we have to distinguish two possible cases:

1. (X−2λ′5) cos 2β ≥ Y cos 2α.
Then one has

X(1+cos2β)−Y (1+cos2β) cos 2α

−λ′5(1+cos 2β)≤ sin
2 2β. (42)
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Making use of our assumption, we can obtain from (42)
a simple constraint that does not involve Y , namely

X ≤ 1+λ′5 (43)

(to arrive at the last relation, we had to divide by the
factor 1− cos 2β; when it vanishes, we can use directly
the original inequality (39) and obtain the same result).

2. (X−2λ′5) cos 2β ≤ Y cos 2α.
In a similar way as in the preceding case, the inequal-
ity (41) implies the same bound (43).

Thus, having constrainedX =M2H+M
2
h according to (43),

we can obviously also write

M2H ≤ 1+λ
′
5. (44)

Now, it is not difficult to see that for M2h = 0,M
2
± =

λ′5+
1
2 ,M

2
A = 1+λ

′
5, α= π−β, (40) is satisfied withM

2
H =

1+λ′5 and means that (44) represents the mass upper
bound pertinent to the original unitarity constraint (39).
The bound forMh is obtained from (43) by using there

our subsidiary conditionMh ≤MH ; one thus has

M2h ≤
1

2
(1+λ′5). (45)

The upper limit in (45) becomes saturated (i.e. M2h =
1
2 (1+λ

′
5)) forMH =Mh,M

2
A= 0,M

2
± = λ

′
5/2,α=3π/4, β =

π/4. It is worth noticing that here we have fixed a particu-
lar value of the angle β, while all previous constraints were
independent of β (i.e. for any β we were then able to find
an appropriate value of α). A more detailed analysis shows
that, in general, the upper bound for Mh indeed depends
explicitly on β. To derive the corresponding formula, we
consider the boundary valueMh =MH (i.e. Y = 0) and use
also (40). The inequality (39) then becomes

M2h−λ
′
5

(
1−
sin2 2β

2

)
+ |M2h cos 2β−λ

′
5 cos 2β| ≤

sin2 2β

2
.

(46)

To work it out, we will assume that M2h ≥ λ
′
5 (taking into

account (45) this means that λ′5 ≤ 1; in fact, one can do
even without such a restriction, but for our perturbative
treatment only sufficiently small values of λ′5 are of real in-
terest). The inequality (46) then becomes

M2h ≤
(1−λ′5)

2

(1+cos2β)(1− cos 2β)

1+ | cos2β|
+λ′5. (47)

Obviously, the maximum bound (45) is recovered from the
last expression for β = π/4. Let us also remark that the
choice α = π−β comes, as in all previous cases, from the
requirement that Z =−Y .

7 Upper bound for the lightest scalar for ξ = 0

One can notice that any Higgs mass upper limit discussed
so far becomes saturated only when at least one of the

other scalar masses vanishes. Thus, another meaningful
question arising in this connection is what can be an up-
per bound for the lightest Higgs boson (within a consid-
ered set of the five scalars h,H,A0,H±). Let us first take
h to be the lightest scalar state; it means that in our
analysis we will include the additional assumption Mh ≤
MH ,MA,M±. The procedure we are going to employ is
a modest generalization of the earlier calculation [7]. By
squaring the inequality (39), one obtains

(X−X0)
2−

(
1−
5

9
sin2 2α

)
(Y −Y0)

2 ≥R2 (48)

where X0, Y0 and R depend on λ
′
5, α, β,M

2
±+M

2
A/2. This

inequality defines the domain bounded by the hyperbola
shown in Fig. 1, but the original constraint (39) corres-
ponds just to its left-hand part. In order to find the so-
lution, one should realize that the slope of the asymptote
with respect to the X-axis must be greater than the slope
of the straight linesX =±Y (this follows from the fact that
the coefficient 1− 59 sin

2 2α, multiplying Y 2 in (48), is less
than one). Because of that, the maximum value ofMh cor-
responds to Y = 0 and a+ = 8π, and we are thus led to the
equation

X−λ′5(2− sin
2 2β)

+

√
cos2 2β(X−2λ′5)

2+
4

9
sin4 2β

(
M2±+

M2A
2
−
λ′5
2

)

= sin2 2β. (49)

It is clear that for smaller M±,MA one has a bigger
value of Mh, so the needed upper estimate is obtained
for M± =MA =Mh (note also that from Y = 0 one has
X = 2M2h). In this way one obtains an equation for the

Fig. 1. The region of admissible values ofM2h if h is assumed to
be the lightest scalar
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Fig. 2. Dependence of lightest boson mass on β

maximumMh:

2M2h−λ
′
5(2− sin

2 2β)

+

√
4(M2h−λ

′
5)
2 cos2 2β+sin4 2β(M2h−

1

3
λ′5)

2

= sin2 2β. (50)

From (50) one can calculate M2h as a function of sin
2 2β.

It can be shown that for λ′5 < 3/5 this function is increas-
ing, i.e. the maximum is reached for β = π/4 and its value
becomes

M2h =
1

3
+
4

9
λ′5. (51)

We do not display the explicit dependence of the maximum
Mh on β, but it is clear that the solution of (50) is straight-
forward. Finally, we should also examine the cases where
the lightest Higgs boson mass is either MA or M±. How-
ever, from the above discussion it is clear that both these
extremes occur whenMh =MA =M±.
Similarly, from (49) one can derive a constraint for the

mass of the lightest neutral scalar boson (which we denote

Fig. 3. Charged Higgs boson,
with theoretical estimate (36)

Mn). In this case we substitute thereX = 2M
2
n,M

2
A =M

2
n,

M2± = 0 and thus obtain the equation

2M2n−λ
′
5(2− sin

2 2β)

+

√
4(M2n−λ

′
5)
2 cos2 2β+sin4 2β

(
M2n
3
−
1

3
λ′5

)2

= sin2 2β. (52)

From (52) one then obtains M2n as a function of sin
2 2β,

which is increasing for λ′5 < 1. Its maximum reached at
β = π/4 becomes

M2n =
3

7
+
4

7
λ′5. (53)

8 Numerical solution for ξ �= 0

In the general case with ξ �= 0 (i.e. with CP violation in
the scalar sector) we have not been able to solve the in-
equalities (28) analytically, so we had to resort to an ap-
propriate numerical procedure. The main result we have
obtained in this way is that for small values of the parame-
ter ν (see (3)), in particular for ν′ ∈ 〈0, 0.3〉, the upper mass
bounds in question are the same as for ξ = 0. The inter-
val has been chosen such that the variations in the upper
estimates are at the level of 50–100%; the validity of our
theoretical estimates is guaranteed up to ν′ < 3/5 (see the
remark below (50)).
Our numerical procedure consists in solving the in-

equalities (28) on the space of parameters λ′1,2,3,4,5,6 and
ξ restricted by the condition (3), where one also adds con-
straints for the existence of a minimum of the potential (1):
λ′4 > 0 (i.e. m

2
± > 0, see (12)) and the requirement of pos-

itive definiteness of the matrix (10) (i.e. m2A,H,h > 0). On
this parametric subspace we have looked for the maximum
values of the following quantities:

1. Mass of the charged Higgs bosonm± (see Fig. 3)
2. Mass of the lightest Higgs boson (see Fig. 4)
3. Mass of the lightest neutral Higgs, i.e. the lightest one
among A,H, h (see Fig. 5)
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Fig. 4. Lightest scalar mass,
with theoretical estimate (51)

Fig. 5. Heaviest neutral Higgs
boson, with theoretical estimate
(44) or (38)

Fig. 6. Lightest neutral boson
with theoretical estimate (53)

4. Mass of the heaviest neutral Higgs, i.e. the heaviest
among A,H, h (see Fig. 6).

Let us remark that in this case we have not distinguished
between A and h,H, which are superpositions of the CP -
odd and CP -even states.

In our plots we display, apart from the dependence of
the masses in question on ν, also the values of the parame-
ter ξ in the cases λ5 = λ6 and λ5 �= λ6, respectively, in order
to be able to distinguish the extreme cases without CP vi-
olation (ξ = kπ/2 or λ5 = λ6, see the discussion in Sect. 2).
From Figs. 3, 4, 5 and 6 it can be seen that all examined
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mass upper bounds are reached just in the aforementioned
extreme cases. In view of this, we can make use of our pre-
vious analytic expressions, except for the case 3, which we
have not solved analytically.
Our results have been simulated by means of the com-

puter program Matlab 6.0, package optim, with the help
of the function fmincon. The numerical errors are mostly
due to an insufficiently smooth condition for the positive
definiteness of the matrix (10).

9 Conclusions

In the present paper we have reconsidered upper bounds
for the scalar boson masses within the THDM, by using
the well-known technical constraint of tree-level unitar-
ity. Our analysis should extend and generalize the results
of some previous treatments, in particular those obtained
in [8] and [7]. Although we basically employ the traditional
methods, we have tried to present some details of the cal-
culations not shown in the earlier papers – we have done so
not only for the reader’s convenience, but also to provide
a better insight into the origin of the numerical results dis-
played here. As we have already noted in the Introduction,
some new relevant papers on the subject have appeared
quite recently (see [9–11]). In these works, the structure
of the unitarity constraints is discussed in detail within
a rather general THDM, but there is no substantial overlap
with our results, since our main point is rather a detailed
explicit solution of the inequalities in question.
So, let us now summarize briefly our main results. We

have found upper limits for Higgs boson masses in depen-
dence on the parameter ν that embodies information about
possible flavour-changing neutral scalar-mediated interac-
tions. The upper bounds are seen to grow with increasing
ν (see Table 2). On the other hand, this parameter can-
not take on large values (to avoid a conflict with current
phenomenology), and thus it makes no real sense to con-
sider the mass estimates for an arbitrary ν; in the present
paper we restrict ourselves to ν ≤ 0.4 (cf. the condition
used when deriving the relation (51)). In the case with
no CP violation in the scalar sector (ξ = 0), the relevant
results are obtained from the inequalities (36), (38), (44)
and (45), and the bound for the lightest scalar is shown
in (51) (where one should also pass from λ′5 to λ5 ac-
cording to (31)). In Sect. 8 we have then verified that in
the CP -violating case these values remain the same. The
results are shown in Table 2, where we have singled out
the case ν = 0 that corresponds to the absence of flavour-
changing scalar currents. Let us remark that in the CP -
violating case we do not distinguish betweenH andA, and
in the CP -conserving case the bounds for H and A are the
same.
Further, we have calculated an explicit dependence of

the upper limit forMh on the angle β in the case with ξ =0.
The analytic expression reads

M2h ≤
sin2 2β

1+ | cos2β|

(
1

2
−
3

32π
λ5

)
+λ5

3

16π
(54)

Table 2. Comparison with other works

H A H� h The lightest

Our results

m

mLQT

√
1+ν

3

16π

√
1

2
+ν

3

32π

√
1

3
+ν

1

12π
m

[GeV]
712 503 411

Results [7]

m

mLQT
1

√
3

√
3

2

1
√
2

1
√
3

m

[GeV]
712 1233 872 503 411

Results [8]
m

[GeV]
638 691 695 435 –

(cf. (47) with λ5 retrieved). The dependence of the relevant
bound for a lightest scalar boson can be obtained from (50)
and the results for some particular values of λ5 are depicted
in Fig. 2.
For ν = 0 and ξ = 0, our results can be compared di-

rectly with those published in [7]. We obtain somewhat
stronger bounds for mA and m± since, in addition to the
set of constraints utilized in [7], we have employed also the
inequality p1 < 8π, which stems from charged processes (cf.
the end of Sect. 4) not considered in [7]. On the other hand,
our estimates for mH , mh and the lightest scalar coincide
with the results in [7], since the above-mentioned extra in-
equality is not used here. It is also noteworthy that the
upper limits for mh and mH coincide with the SM LQT
bound if they are estimated separately and, depending on
the number of the simultaneously estimated Higgs scalars,
the coefficient 1/2 appears when we take two of them and
1/3 when all of them are considered.
In the case ξ = 0 and λ5 �= 0 comparison with [8] is

possible. Here we can compare only the corresponding nu-
merical values, which turn out to be approximately equal
when λ5 = 0. However, for λ5 = 0 our results obviously dif-
fer from those of [8]: in particular, the bounds for mA,m±
displayed in [8] appear to decrease with increasing λ5. In [8]
it is stated that some fixed values of the angle β were used;
for the purpose of a better comparison we have therefore
calculated the β-dependence of the upper bound for mh,
with the result shown in (54). As it turns out,mA andm±
do not depend on β in this case.
Finally, let us mention that in the CP -violating case

we have not been able to obtain analytic results; we have
only shown, numerically, that the maximum values of the
masses in question are obtained for ξ = 0, i.e. the upper
mass bounds are the same as in the case with no CP viola-
tion in the scalar sector.
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